

Namecoin as a Decentralized Alternative
to Certificate Authorities for TLS: The Next Generation

Jeremy Rand
Lead Application Engineer, The Namecoin Project

https://www.namecoin.org/

OpenPGP: 5174 0B7C 732D 572A 3140 4010 6605 55E1 F8F7 BF85

Presented at 35C3 Monero Assembly

A brief introduction to Namecoin

● Like the DNS, but secured by a blockchain.
● Uses the “.bit” top-level domain.
● Names are represented by special coins.
● First project forked from Bitcoin (in 2011; Bitcoin was created in

2009).
● Original focus of developers was on censorship-resistance.

– We later became interested in PKI use cases (e.g. for TLS) as well.

Getting rid of Certificate Authorities (CA’s) in TLS

● TLS trusts over 1000 certificate authorities.
– CA’s get compromised.

● DigiNotar (allegedly by Iranian intelligence).

– We want to replace CA's with Namecoin.

● Subject of this talk: improvements in Namecoin integration with
TLS implementations over the last year.
– Better compatibility and scalability.

– Smaller attack surface.

Positive VS Negative Overrides

● We have 2 orthogonal goals:
– Positive overrides: a certificate that matches the blockchain should

be accepted, even if it's not signed by a public CA.

– Negative overrides: a certificate that doesn't match the blockchain
should be rejected, even if it is signed by a public CA.

The State of Namecoin TLS One Year Ago:
Positive Overrides

● “Dehydrated certificates”: deterministically reconstruct a self-
signed end-entity X.509 certificate from only:
– The domain name.

– The public key.

– The validity period.

– The signature.

● The resulting certificate can be safely imported as a trust anchor.
● Certificate is 255 bytes of JSON; easily fits in Namecoin.

The State of Namecoin TLS One Year Ago:
Negative Overrides

● Abuse HPKP by setting a key pin for all .bit domains, which no
one has the private key for.
– We used a public key hash of 1/pi, scaled to 256 bits.

● This causes all public-CA-issued certs for .bit domains to be
rejected.

● But our dehydrated certs will still work, because user-defined
trust anchors are exempt from HPKP.

Positive Overrides: Adding Firefox Compatibility

● Firefox uses the mozilla::pkix certificate validation library, with
NSS as the trust store.

● mozilla::pkix doesn't honor end-entity trust anchors from NSS's
trust store.
– The Mozilla people believe that supporting this would be a footgun.

– This means that dehydrated self-signed end-entity certs, though valid
in NSS, aren't valid in mozilla::pkix.

– How can we fix this?

Name Constraints

● Name constraints restrict the set of domain names that a TLS
CA can issue certs for.

● Intended use cases include:
– A corporate intranet CA can be constrained to only issue certs within

a corporate intranet TLD.

– You can buy a name-constrained CA from a public CA, and then you
can issue as many certs as you want within your domain name
without bothering the public CA.

Name constraints aren't often used

● Because:
– Corporate intranet CA's like to violate employees' privacy.

– Public CA's would rather make you buy more certs from them.

● Most high-profile user is probably Let's Encrypt: the Let's Encrypt CA has a
name constraint preventing it from issuing certs for US military domain
names.

● Most major TLS implementations do support name constraints.
– Last straggler was probably Apple products, which only added support in the last

few years.

– See the BetterTLS test suite from Netflix for more details.

Storing name-constrained CA's in the blockchain

● We can construct a name-constrained root CA trust anchor from a
public key + domain name.

● Validity period... who cares, root CA's keep their keys offline, they don't
need to rotate keys like TLS servers do.

● Signature... could be a self-signature, except that the name constraints
RFC says that name constraints are ignored for self-signed CA's.
– No idea if implementations follow the spec on this, but easy to workaround by

signing with a locally generated root CA.

– Avoiding a self-signature also saves blockchain space.

Name-constrained CA's work fine in Firefox

● But what if we also want to support the (rare) TLS
implementations that don't support name constraints?
– Reuse the public key from the name-constrained CA to construct an

end-entity cert, signed by the CA.

– Load validity period and signature from blockchain just like Gen-1
dehydrated certs.

– Load the resulting end-entity cert as a trust anchor for
implementations that don't support name constraints.

– Total blockchain storage identical to Gen-1 dehydrated certs.

Negative Overrides without HPKP

● HPKP is on its last legs.
– Chromium already deprecated it.

– Firefox has an open bug for deprecating it.

– RFC authors have abandoned it.

● So we need a new way to do negative overrides.

Name constraints for negative overrides

● Let's say that we want to prevent all public CA's from issuing .bit
certs.
– We could politely ask them to put a name constraint in their cert, like

Let's Encrypt did for .mil.

– But they'd probably say no.

Name constraints for negative overrides

● Can we force TLS implementations to pretend that those CA's have a name
constraint?
– Kind of, not really.

● There's a spec called "attached extensions" for this purpose.
– Only implemented in a few GNU/Linux distros e.g. Fedora.

– Via the p11-kit project.

– No real-world software knows how to read this data from p11-kit.

– Not implemented in CryptoAPI, NSS, OpenSSL, or basically anything else.

– Also deletes any pre-existing name constraints in those CA's... might be bad news
for .mil.

Can we edit the trust anchor's
certificate ourselves?

● We'd break the self-signature.
● We'd probably have to merge the Namecoin name constraint

with any existing ones.
– I'm not dumb enough to try to code that.

● Not clear whether name constraints even have an effect for self-
signed certificates (such as most trust anchors).

Can we edit the trust anchor's
certificate ourselves? (2)

● What if we just replace the issuer and signature of the root CA,
so that it's signed by a CA we locally created that has the name
constraint we want?

● This is actually something that CA's do for each other all the
time, it's called cross-signing.

Cross-signing tooling issues

● All the existing tooling (e.g. openssl command line) requires that
you have a Certificate Signing Request, signed by the CA you
want to cross-sign.

● This is security theater that's not backed by any actual
cryptography.
– There's no cryptographic procedure by which I can prevent you from

signing my public key.

– The OpenSSL devs who added that requirement should feel bad.

So I made my own tooling

● I made a Go library and command-line tool to cross-sign an
input CA with a locally generated CA that has a name
constraint.
– Without the input CA's permission.

● Deployment:
– Untrust the existing CA.

– Trust the new locally generated CA.

– Insert the new cross-signed CA to the intermediate CA store.

Other use cases for my tooling

● You don't trust your corporate intranet CA to not MITM your
Internet traffic?
– You can use my tool to constrain that CA to only your intranet's

domain names.

● Or you can apply a name constraint to all the public CA's so
that they can't MITM your corporate intranet.

Wrapper program for NSS: tlsrestrict_nss_tool

● I made a tool that wraps my name constraint tooling, and
applies the name constraint to all built-in CA's in NSS.

● Run tlsrestrict_nss_tool, and you've got Namecoin negative
overrides for Firefox (and the GNU/Linux version of Chromium).

How does NSS's trust store work?

● NSS's trust store is split into 2 components:
– CKBI

– Softoken

● CKBI stores the immutable list of “built-in” trust anchors.
● Softoken stores all certificates inserted by the user.

– To change the trust status of a CKBI certificate, you actually insert
the CKBI certificate into Softoken, which will override the CKBI entry.

Problems with using Softoken to
store Namecoin TLS overrides

● Softoken uses BerkeleyDB or sqlite.
● BDB isn't concurrence-safe, so we can't edit trust settings while

Firefox is running.
– Makes it impossible to insert positive overrides based on hooking DNS

queries.

– Can (kind of) be worked around by pre-caching the entire set of TLSA
records in the blockchain.

● Only works with a full node.
● Doesn't scale.
● Doesn't work with DNSSEC delegation.

Problems with using Softoken to
store Namecoin TLS overrides (2)

● sqlite is slow.
– tlsrestrict_nss_tool takes 8-9 minutes to apply name constraints to all

of Fedora's trust anchors.

– Partially because NSS is poorly optimized.
● 2 sqlite transactions per cert that you touch.
● I considered an LD_PRELOAD hook that intercepts sqlite commands and

rewrites them to be more efficient.
● Spent a couple of days designing such a hook.
● Then came to my senses and realized that this approach is horrifying.

Problems with using Softoken to
store Namecoin TLS overrides (3)

● Race conditions when CKBI gets updated.
– A removed CA might still have a constrained version in Softoken.

● DNS domains are now vulnerable.

– A newly added CA might not be constrained by Softoken at all.
● Namecoin domains are now vulnerable.

Problems with using Softoken to
store Namecoin TLS overrides (4)

● Leaves private data (browsing history) in the NSS DB.
– We try to delete old data after about an hour, but this isn't safe to rely

on.

– Softoken is not designed to be amnesic, we shouldn't be writing this
data to the disk at all.

● Doesn't work at all in Tor Browser's default settings.
– Because Tor Browser is competent, aims to be amnesic, and

therefore completely disables Softoken and only uses CKBI.

Problems with using Softoken to
store Namecoin TLS overrides (5)

● Confuses key pinning.
– Key pinning usually exempts user-defined trust anchors.

– Works by storing a boolean “built-in” attribute for certificates.

– Softoken doesn't allow setting the “built-in” attribute.

– So if you replace all the CKBI certs with name-constrained versions
in Softoken, the CKBI certs lose their “built-in” attribute, which
disables key pinning enforcement.

How exactly is NSS interacting
with CKBI and Softoken?

● Turns out that CKBI and Softoken are actually just PKCS#11
modules.

● Yes, that's the spec that's usually used by HSM's.
● Could we just implement our own PKCS#11 module that

handles Namecoin TLSA lookups without storing any state?
● We've done exactly that.

Introducing ncp11:
a PKCS#11 Module for Namecoin TLS

● Written in Go.
– That means we had to write a Go library for creating PKCS#11 modules

too.

– Based loosely on Miek Gieben's PKCS#11 client library for Go.

● If you search ncp11 for a domain name, it looks up the trust anchor in
Namecoin and returns it.

● It also proxies to CKBI, and edits any trust anchors returned by CKBI
to add a name constraint blacklisting .bit.

● Kudos to aerth for developing a lot of the ncp11 code.

Introducing ncp11:
a PKCS#11 Module for Namecoin TLS (2)

● Works for any software that uses PKCS#11 trust stores.
– i.e. anything based on mozilla::pkix, NSS, or GnuTLS.

– Maybe other software too.

● The positive override functionality should be adaptable to work
with non-Namecoin domains via DANE.
– Negative override functionality is trickier, we're not sure if it's doable.

ncp11 and Licensing

● ncp11 is a PKCS#11 module.
– Which means it's a dynamically linked library (.so file).

● There is some disagreement about whether the GPL requires
applications that use a GPL PKCS#11 module to be GPL-
compliant.
– FSF says it does.

– The Namecoin developers think it probably doesn't (and that a copyright
license can't do that even if it purports to).

– Unfortunately there doesn't seem to be any case law on this.

ncp11 and Licensing (2)

● We don't want to waste time arguing with FSF.
● We also don't want to waste time filing a lawsuit to get some

case law.
● So, ncp11 is licensed under LGPLv3+, instead of Namecoin's

typical GPLv3+.
– Meaning you can use ncp11 with proprietary web browsers without

violating the license.

– But you should still use libre web browsers.

ncp11 Workshop

● If you'd like to try out ncp11, I'm holding a workshop later.
● I'll cover setting up ncp11 for Chromium, Firefox, and Tor

Browser.
● Check the Critical Decentralization Cluster schedule for details.

– https://frab.riat.at/

Sandboxing Namecoin TLS

● It really sucks that we need to give ncdns or ncp11 full access
to the root CA trust store.
– Means that if ncdns or ncp11 is compromised, it could enable non-.bit

websites to be MITMed.

● Could we somehow sandbox ncdns or ncp11 to a "Namecoin-
only root CA trust store"?

● We can actually do this with name constraints.

Sandboxing Namecoin TLS (2)

● On ncdns/ncp11 install, generate and trust a CA with a name
constraint whitelisting .bit.

● Give ncdns/ncp11 read access to the constrained CA's private
key.

● Only give ncdns/ncp11 write access to the intermediate CA
store.

Sandboxing Namecoin TLS (3)

● For CryptoAPI:
– Trust store is in the Windows registry.
– Intermediate cert store is a different registry key from the Root cert store.
– Registry has ACL's.

● For NSS:
– NSS allows loading a PKCS#11 module while ignoring its trust flags.
– This effectively makes the PKCS#11 module an intermediate-only cert

store.

Deficiency in HSTS

● HSTS (HTTPS Strict Transport Security) forces browsers to use
HTTPS to connect to a given site.

● Enabled via an HTTP header.
● Can't protect you on your first visit to a website.

– Because your browser hasn't seen that header yet.

Introducing DNSSEC-HSTS

● WebExtension that redirects HTTP to HTTPS for websites that
have a TLS certificate (DNSSEC-signed TLSA record) in their
DNS.

● Works on first visit to website (unlike HSTS HTTP header).
● As decentralized as DNS.

– No central repository of rules like HTTPS Everywhere.

– Works with Namecoin.

Contact Me At...

● https://www.namecoin.org/

● OpenPGP:
5174 0B7C 732D 572A 3140 4010 6605 55E1 F8F7 BF85

● jeremyrand@airmail.cc

● Or just find me here at the Congress! (The Namecoin logo on my shirt
should help you find me.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

