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A brief introduction to Namecoin

● Like the DNS, but secured by a blockchain.
● Uses the “.bit” top-level domain.
● Names are represented by special coins.
● First project forked from Bitcoin (in 2011; Bitcoin was created in 

2009).
● Original focus of developers was on censorship-resistance.

– We later became interested in PKI use cases (e.g. for TLS) as well.



  

Getting rid of Certificate Authorities (CA’s) in TLS

● TLS trusts over 1000 certificate authorities.
– CA’s get compromised.

● DigiNotar (allegedly by Iranian intelligence).

– We want to replace CA's with Namecoin.

● Subject of this talk: improvements in Namecoin integration with 
TLS implementations over the last year.
– Better compatibility and scalability.

– Smaller attack surface.



  

Positive VS Negative Overrides

● We have 2 orthogonal goals:
– Positive overrides: a certificate that matches the blockchain should 

be accepted, even if it's not signed by a public CA.

– Negative overrides: a certificate that doesn't match the blockchain 
should be rejected, even if it is signed by a public CA.



  

The State of Namecoin TLS One Year Ago:
Positive Overrides

● “Dehydrated certificates”: deterministically reconstruct a self-
signed end-entity X.509 certificate from only:
– The domain name.

– The public key.

– The validity period.

– The signature.

● The resulting certificate can be safely imported as a trust anchor.
● Certificate is 255 bytes of JSON; easily fits in Namecoin.



  

The State of Namecoin TLS One Year Ago:
Negative Overrides

● Abuse HPKP by setting a key pin for all .bit domains, which no 
one has the private key for.
– We used a public key hash of 1/pi, scaled to 256 bits.

● This causes all public-CA-issued certs for .bit domains to be 
rejected.

● But our dehydrated certs will still work, because user-defined 
trust anchors are exempt from HPKP.



  

Positive Overrides: Adding Firefox Compatibility

● Firefox uses the mozilla::pkix certificate validation library, with 
NSS as the trust store.

● mozilla::pkix doesn't honor end-entity trust anchors from NSS's 
trust store.
– The Mozilla people believe that supporting this would be a footgun.

– This means that dehydrated self-signed end-entity certs, though valid 
in NSS, aren't valid in mozilla::pkix.

– How can we fix this?



  

Name Constraints

● Name constraints restrict the set of domain names that a TLS 
CA can issue certs for.

● Intended use cases include:
– A corporate intranet CA can be constrained to only issue certs within 

a corporate intranet TLD.

– You can buy a name-constrained CA from a public CA, and then you 
can issue as many certs as you want within your domain name 
without bothering the public CA.



  

Name constraints aren't often used

● Because:
– Corporate intranet CA's like to violate employees' privacy.

– Public CA's would rather make you buy more certs from them.

● Most high-profile user is probably Let's Encrypt: the Let's Encrypt CA has a 
name constraint preventing it from issuing certs for US military domain 
names.

● Most major TLS implementations do support name constraints.
– Last straggler was probably Apple products, which only added support in the last 

few years.

– See the BetterTLS test suite from Netflix for more details.



  

Storing name-constrained CA's in the blockchain

● We can construct a name-constrained root CA trust anchor from a 
public key + domain name.

● Validity period... who cares, root CA's keep their keys offline, they don't 
need to rotate keys like TLS servers do.

● Signature... could be a self-signature, except that the name constraints 
RFC says that name constraints are ignored for self-signed CA's.
– No idea if implementations follow the spec on this, but easy to workaround by 

signing with a locally generated root CA.

– Avoiding a self-signature also saves blockchain space.



  

Name-constrained CA's work fine in Firefox

● But what if we also want to support the (rare) TLS 
implementations that don't support name constraints?
– Reuse the public key from the name-constrained CA to construct an 

end-entity cert, signed by the CA.

– Load validity period and signature from blockchain just like Gen-1 
dehydrated certs.

– Load the resulting end-entity cert as a trust anchor for 
implementations that don't support name constraints.

– Total blockchain storage identical to Gen-1 dehydrated certs.



  

Negative Overrides without HPKP

● HPKP is on its last legs.
– Chromium already deprecated it.

– Firefox has an open bug for deprecating it.

– RFC authors have abandoned it.

● So we need a new way to do negative overrides.



  

Name constraints for negative overrides

● Let's say that we want to prevent all public CA's from issuing .bit 
certs.
– We could politely ask them to put a name constraint in their cert, like 

Let's Encrypt did for .mil.

– But they'd probably say no.



  

Name constraints for negative overrides

● Can we force TLS implementations to pretend that those CA's have a name 
constraint?
– Kind of, not really.

● There's a spec called "attached extensions" for this purpose.
– Only implemented in a few GNU/Linux distros e.g. Fedora.

– Via the p11-kit project.

– No real-world software knows how to read this data from p11-kit.

– Not implemented in CryptoAPI, NSS, OpenSSL, or basically anything else.

– Also deletes any pre-existing name constraints in those CA's... might be bad news 
for .mil.



  

Can we edit the trust anchor's 
certificate ourselves?

● We'd break the self-signature.
● We'd probably have to merge the Namecoin name constraint 

with any existing ones.
– I'm not dumb enough to try to code that.

● Not clear whether name constraints even have an effect for self-
signed certificates (such as most trust anchors).



  

Can we edit the trust anchor's 
certificate ourselves?  (2)

● What if we just replace the issuer and signature of the root CA, 
so that it's signed by a CA we locally created that has the name 
constraint we want?

● This is actually something that CA's do for each other all the 
time, it's called cross-signing.



  

Cross-signing tooling issues

● All the existing tooling (e.g. openssl command line) requires that 
you have a Certificate Signing Request, signed by the CA you 
want to cross-sign.

● This is security theater that's not backed by any actual 
cryptography.
– There's no cryptographic procedure by which I can prevent you from 

signing my public key.

– The OpenSSL devs who added that requirement should feel bad.



  

So I made my own tooling

● I made a Go library and command-line tool to cross-sign an 
input CA with a locally generated CA that has a name 
constraint.
– Without the input CA's permission.

● Deployment:
– Untrust the existing CA.

– Trust the new locally generated CA.

– Insert the new cross-signed CA to the intermediate CA store.



  

Other use cases for my tooling

● You don't trust your corporate intranet CA to not MITM your 
Internet traffic?
– You can use my tool to constrain that CA to only your intranet's 

domain names.

● Or you can apply a name constraint to all the public CA's so 
that they can't MITM your corporate intranet.



  

Wrapper program for NSS: tlsrestrict_nss_tool

● I made a tool that wraps my name constraint tooling, and 
applies the name constraint to all built-in CA's in NSS.

● Run tlsrestrict_nss_tool, and you've got Namecoin negative 
overrides for Firefox (and the GNU/Linux version of Chromium).



  

How does NSS's trust store work?

● NSS's trust store is split into 2 components:
– CKBI

– Softoken

● CKBI stores the immutable list of “built-in” trust anchors.
● Softoken stores all certificates inserted by the user.

– To change the trust status of a CKBI certificate, you actually insert 
the CKBI certificate into Softoken, which will override the CKBI entry.



  

Problems with using Softoken to 
store Namecoin TLS overrides

● Softoken uses BerkeleyDB or sqlite.
● BDB isn't concurrence-safe, so we can't edit trust settings while 

Firefox is running.
– Makes it impossible to insert positive overrides based on hooking DNS 

queries.

– Can (kind of) be worked around by pre-caching the entire set of TLSA 
records in the blockchain.

● Only works with a full node.
● Doesn't scale.
● Doesn't work with DNSSEC delegation.



  

Problems with using Softoken to 
store Namecoin TLS overrides (2)

● sqlite is slow.
– tlsrestrict_nss_tool takes 8-9 minutes to apply name constraints to all 

of Fedora's trust anchors.

– Partially because NSS is poorly optimized.
● 2 sqlite transactions per cert that you touch.
● I considered an LD_PRELOAD hook that intercepts sqlite commands and 

rewrites them to be more efficient.
● Spent a couple of days designing such a hook.
● Then came to my senses and realized that this approach is horrifying.



  

Problems with using Softoken to 
store Namecoin TLS overrides (3)

● Race conditions when CKBI gets updated.
– A removed CA might still have a constrained version in Softoken.

● DNS domains are now vulnerable.

– A newly added CA might not be constrained by Softoken at all.
● Namecoin domains are now vulnerable.



  

Problems with using Softoken to 
store Namecoin TLS overrides (4)

● Leaves private data (browsing history) in the NSS DB.
– We try to delete old data after about an hour, but this isn't safe to rely 

on.

– Softoken is not designed to be amnesic, we shouldn't be writing this 
data to the disk at all.

● Doesn't work at all in Tor Browser's default settings.
– Because Tor Browser is competent, aims to be amnesic, and 

therefore completely disables Softoken and only uses CKBI.



  

Problems with using Softoken to 
store Namecoin TLS overrides (5)

● Confuses key pinning.
– Key pinning usually exempts user-defined trust anchors.

– Works by storing a boolean “built-in” attribute for certificates.

– Softoken doesn't allow setting the “built-in” attribute.

– So if you replace all the CKBI certs with name-constrained versions 
in Softoken, the CKBI certs lose their “built-in” attribute, which 
disables key pinning enforcement.



  

How exactly is NSS interacting
with CKBI and Softoken?

● Turns out that CKBI and Softoken are actually just PKCS#11 
modules.

● Yes, that's the spec that's usually used by HSM's.
● Could we just implement our own PKCS#11 module that 

handles Namecoin TLSA lookups without storing any state?
● We've done exactly that.



  

Introducing ncp11: 
a PKCS#11 Module for Namecoin TLS

● Written in Go.
– That means we had to write a Go library for creating PKCS#11 modules 

too.

– Based loosely on Miek Gieben's PKCS#11 client library for Go.

● If you search ncp11 for a domain name, it looks up the trust anchor in 
Namecoin and returns it.

● It also proxies to CKBI, and edits any trust anchors returned by CKBI 
to add a name constraint blacklisting .bit.

● Kudos to aerth for developing a lot of the ncp11 code.



  

Introducing ncp11: 
a PKCS#11 Module for Namecoin TLS (2)

● Works for any software that uses PKCS#11 trust stores.
– i.e. anything based on mozilla::pkix, NSS, or GnuTLS.

– Maybe other software too.

● The positive override functionality should be adaptable to work 
with non-Namecoin domains via DANE.
– Negative override functionality is trickier, we're not sure if it's doable.



  

ncp11 and Licensing

● ncp11 is a PKCS#11 module.
– Which means it's a dynamically linked library (.so file).

● There is some disagreement about whether the GPL requires 
applications that use a GPL PKCS#11 module to be GPL-
compliant.
– FSF says it does.

– The Namecoin developers think it probably doesn't (and that a copyright 
license can't do that even if it purports to).

– Unfortunately there doesn't seem to be any case law on this.



  

ncp11 and Licensing (2)

● We don't want to waste time arguing with FSF.
● We also don't want to waste time filing a lawsuit to get some 

case law.
● So, ncp11 is licensed under LGPLv3+, instead of Namecoin's 

typical GPLv3+.
– Meaning you can use ncp11 with proprietary web browsers without 

violating the license.

– But you should still use libre web browsers.



  

ncp11 Workshop

● If you'd like to try out ncp11, I'm holding a workshop later.
● I'll cover setting up ncp11 for Chromium, Firefox, and Tor 

Browser.
● Check the Critical Decentralization Cluster schedule for details.

– https://frab.riat.at/



  

Sandboxing Namecoin TLS

● It really sucks that we need to give ncdns or ncp11 full access 
to the root CA trust store.
– Means that if ncdns or ncp11 is compromised, it could enable non-.bit 

websites to be MITMed.

● Could we somehow sandbox ncdns or ncp11 to a "Namecoin-
only root CA trust store"?

● We can actually do this with name constraints.



  

Sandboxing Namecoin TLS (2)

● On ncdns/ncp11 install, generate and trust a CA with a name 
constraint whitelisting .bit.

● Give ncdns/ncp11 read access to the constrained CA's private 
key.

● Only give ncdns/ncp11 write access to the intermediate CA 
store.



  

Sandboxing Namecoin TLS (3)

● For CryptoAPI:
– Trust store is in the Windows registry.
– Intermediate cert store is a different registry key from the Root cert store.
– Registry has ACL's.

● For NSS:
– NSS allows loading a PKCS#11 module while ignoring its trust flags.
– This effectively makes the PKCS#11 module an intermediate-only cert 

store.



  

Deficiency in HSTS

● HSTS (HTTPS Strict Transport Security) forces browsers to use 
HTTPS to connect to a given site.

● Enabled via an HTTP header.
● Can't protect you on your first visit to a website.

– Because your browser hasn't seen that header yet.



  

Introducing DNSSEC-HSTS

● WebExtension that redirects HTTP to HTTPS for websites that 
have a TLS certificate (DNSSEC-signed TLSA record) in their 
DNS.

● Works on first visit to website (unlike HSTS HTTP header).
● As decentralized as DNS.

– No central repository of rules like HTTPS Everywhere.

– Works with Namecoin.



  

Contact Me At...

● https://www.namecoin.org/ 

● OpenPGP: 
5174 0B7C 732D 572A 3140 4010 6605 55E1 F8F7 BF85

● jeremyrand@airmail.cc 

● Or just find me here at the Congress!  (The Namecoin logo on my shirt 
should help you find me.)
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